Part Number Hot Search : 
AOZ1117 17039363 RF5163 GCF3S 00M25 MM3ZB51H 344000 TC170
Product Description
Full Text Search
 

To Download IR21364JPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.irf.com ? 2009 international rectifier 1 data sheet no. pd pd60342a november 13, 2009 ir21364(s&j)pbf 3-phase bridge driver features ? floating channel designed for bootstrap operation ? tolerant to negative transient voltage ? dv/dt imm une ? gate drive supply range from 11.5 v to 20 v ? undervoltage lockout for all channels ? over-current shutdown turns off all six drivers ? independent 3 half-bridge drivers ? matched propagation delay for all channels ? cross-conduction prevention logic ? low side and high side outputs in phase with input s. ? 3.3 v logic compatible ? lower di/dt gate drive for better noise immunity ? externally programmable delay for automatic fault clear ? rohs compliant typical applications ? motor control ? air conditioners/ washing machines ? general purpose inverters ? micro/mini inverter drivers product summary topology 3 phase bridge driver v offset 600 v v out 11.5 v ? 20 v i o+ & i o- (typical) 200 ma & 350 ma t on & t off (typical) 500 ns & 530 ns package options 28-lead soic 44-lead plcc w/o 12 leads
ir21364(s&j)pbf www.irf.com ? 2009 international rectifier 2 description the ir21364(s&j)pbf is a high voltage, high speed p ower mosfet and igbt drivers with three independent high and low side referenced output cha nnels for 3-phase applications. proprietary hvic technology enables ruggedized monolithic constructi on. logic inputs are compatible with cmos or lsttl outputs, down to 3.3v logic. a current trip functio n which terminates all six outputs can be derived f rom an external current sense resistor. an enable function is available to terminate all six outputs simultan eously. an open-drain fault signal is provided to indicate tha t an overcurrent or undervoltage shutdown has occur red. overcurrent fault conditions are cleared automatica lly after a delay programmed externally via an rc network connected to the rcin input. the output dri vers feature a high pulse current buffer stage desi gned for minimum driver cross-conduction. propagation de lays are matched to simplify use in high frequency applications. the floating channel can be used to d rive n-channel power mosfets or igbts in the high s ide configuration which operates up to 600 v. qualification information ? industrial ?? qualification level comments: this family of ics has passed jedec?s industrial qualification. ir?s consumer qualificat ion level is granted by extension of the higher industr ial level. soic28w msl3 ??? , 260 c (per ipc/jedec j-std-020) moisture sensitivity level plcc44 msl3 ??? , 245 c (per ipc/jedec j-std-020) human body model class 2 (per jedec standard jesd22-a114) esd machine model class b (per eia/jedec standard eia/jesd22-a115) ic latch-up test class i, level a (per jesd78) rohs compliant yes ? qualification standards can be found at internation al rectifier?s web site http://www.irf.com/ ?? higher qualification ratings may be available shoul d the user have such requirements. please contact your international rectifier sales representative f or further information. ??? higher msl ratings may be available for the specifi c package types listed here. please contact your international rectifier sales representative for fu rther information.
ir21364(s&j)pbf www.irf.com ? 2009 international rectifier 3 absolute maximum ratings absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. all vo ltage parameters are absolute voltages referenced to com. the thermal resistance and power dissipation ratin gs are measured under board mounted and still air conditio ns. recommended operating conditions the input/output logic timing diagram is shown in f ig. 1. for proper operation the device should be us ed within the recommended conditions. all voltage parameters are absolute referenced to com. the v s & v ss offset rating are tested with all supplies biased at a 15 v different ial. symbol definition min. max. units v b1,2,3 high side floating supply voltage ir21364 v s1,2,3 +11.5 v s1,2,3 + 20 v s 1,2,3 high side floating supply voltage note 1 600 v cc low side supply voltage ir21364 11.5 20 v ho 1,2,3 high side output voltage v s1,2,3 v b1,2,3 v lo1,2,3 low side output voltage 0 v cc v ss logic ground -5 5 v flt fault output voltage v ss v cc v rcin rcin input voltage v ss v cc v itrip itrip input voltage v ss v ss + 5 v in logic input voltage lin, hin, en v ss v ss + 5 v t a ambient temperature -40 125 c note 1 : logic operational for v s of com -5 v to com + 600 v. logic state held for v s of com -5 to com ? v bs. (please refer to the design tip dt97 - 3 for more details). symbol definition min max units v s high side offset voltage v b 1,2,3 - 25 v b 1,2,3 + 0.3 v b high side floating supply voltage -0.3 625 v ho high side floating output voltage v s1,2,3 - 0.3 v b 1,2,3 + 0.3 v cc low side and logic fixed supply voltage -0.3 25 v ss logic ground v cc - 25 v cc + 0.3 v lo1,2,3 low side output voltage -0.3 v cc + 0.3 v in input voltage lin, hin, itrip, en, rcin v ss -0.3 lower of v cc + 0.3 or vss+15 v flt fault output voltage v ss -0.3 v cc + 0.3 v dv/dt allowable offset voltage slew rate ? 50 v/ns (28 lead soic) ? 1.6 p d package power dissipation @ t a +25 c (44 lead plcc) ? 2.0 w (28 lead soic) ? 78 rth ja thermal resistance, junction to ambient (44 lead plcc) ? 63 c/w t j junction temperature ? 150 t s storage temperature -55 150 t l lead temperature (soldering, 10 seconds) ? 300 c
ir21364(s&j)pbf www.irf.com ? 2009 international rectifier 4 static electrical characteristics v bias (v cc , v bs 1,2,3 ) = 15 v, ta = 25c unless otherwise specified. the v in , v th and i in parameters are referenced to v ss and are applicable to all six channels (hin1,2,3 a nd lin1,2,3). the v o and i o parameters are referenced to com and v s1,2,3 and are applicable to the respective output leads: ho1,2,3 and lo1,2,3. symbol definition min typ max units test conditions v ih logic ?0? input voltage ? ? 0.8 v il logic ?1? input voltage 2.5 ? ? v en,th+ enable positive going threshold ? ? 2.5 v en,th- enable negative going threshold 0.8 ? ? v it,th+ itrip positive going threshold 0.37 0.46 0.55 v it,hys itrip hysteresis ? 0.07 ? v rcin, th+ rcin positive going threshold ? 8 ? v rcin, hys rcin hysteresis ? 3 ? v oh high level output voltage, v bias - v o ? 0.9 1.4 v ol low level output voltage, v o ? 0.4 0.6 io = 20 ma v ccuv+ v cc supply undervoltage positive going threshold ir21364 9.6 10.4 11.2 v ccuv- v cc supply undervoltage negative going threshold ir21364 8.6 9.4 10.2 v ccuvhy v cc supply undervoltage hysteresis ir21364 ? 1 ? v bsuv+ v bs supply undervoltage positive going threshold ir21364 9.6 10.4 11.2 v bsuv- v bs supply undervoltage negative going threshold ir21364 8.6 9.4 10.2 v bsuvhy v bs supply undervoltage hysteresis ir21364 ? 1 ? v llk offset supply leakage current ? ? 50 v b = v s = 600 v i qbs quiescent v bs supply current ? 70 120 a v b1,2,3 = v s1,2,3 = 600 v i qcc quiescent v cc supply current ? 0.6 1.3 ma v in = 0 v or 5 v i lin + input bias current (lout = hi) ? 100 195 v lin = 3.3 v i lin - input bias current (lout = lo) -1 ? ? v lin = 0 v i hin + input bias current (hout = hi) ? 100 195 v hin = 3.3 v i hin - input bias current (hout = lo) -1 ? ? v hin = 0 v i itrip+ ?high? itrip input bias current ? 3.3 6 v itrip = 3.3 v i itrip- ?low? itrip input bias current -1 ? ? v itrip = 0 v i en+ ?high? enable input bias current ? 100 ? v en = 3.3 v i en- ?low? enable input bias current -1 ? ? v en = 0 v i rcin rcin input bias current ? ? 1 a vrcin = 0 v or 15 v io+ output high short circuit pulsed current 120 200 ? vo = 0 v, pw 10 s io- output low short circuit pulsed current 250 350 ? ma vo = 15 v, pw 10 s r on_rcin rcin low on resistance ? 50 100 r on_fault fault low on resistance ? 50 100  i = 1.5 ma
ir21364(s&j)pbf www.irf.com ? 2009 international rectifier 5 dynamic electrical characteristics dynamic electrical characteristics v cc = v bs = v bias = 15 v, v s1,2,3 = v ss = com, ta = 25c and cl = 1000 pf unless otherwise specified . symbol definition min typ max units test conditions t on turn-on propagation delay 350 500 650 t off turn-off propagation delay 375 530 685 t r turn-on rise time ? 125 190 t f turn-off fall time ? 50 75 v in = 0 v & 5 v t en enable low to output shutdown propagation delay 300 450 600 v in, v en = 0 v or 5 v t itrip itrip to output shutdown propagation delay 500 750 1000 v itrip = 5 v t bl itrip blanking time 100 150 ? t flt itrip to fault propagation delay 400 600 800 v in = 0 v or 5 v v itrip = 5 v t filin input filter time (hin, lin) 100 200 ? t filteren enable input filter time 100 200 ? dt deadtime 220 290 360 v in = 0 v & 5 v mt ton, off matching time (on all six channels) ? ? 75 mdt dt matching (hi->lo & lo->hi on all channels) ? ? 70 external dead time >450 nsec pm pulse width distortion (pwin-pwout) ? ? 75 ns pw input =10 s t fltclr fault clear time rcin: r = 2 m  , c = 1 nf 1.3 1.65 2 ms v in = 0 v or 5 v v itrip = 0 v
ir21364(s&j)pbf www.irf.com ? 2009 international rectifier 6 fig. 1. input/output timing diagram fig. 2. switching time waveforms fig. 3. output enable timing waveform en itrip fault hin1,2,3 lin1,2,3 rcin ho1,2,3 lo1,2,3 90% ten en 50% lin1,2,3 hin1,2, 50% 50% pw in t r 10% ho1,2,3 lo1,2,3 90% t f ton tof f 90% 10% ho1,2,3 lo1,2,3 pw 50
ir21364(s&j)pbf www.irf.com ? 2009 international rectifier 7 rc in it r ip fa u lt any ouput titrip 50% 50% 90% tflt 50% tfltclr 50% fig. 5. itrip/rcin timing waveforms fig. 6. input filter function fig. 4. internal deadtime timing waveforms on off on hin/li t in,fi l lo w t in,fi l on off off high
ir21364(s&j)pbf www.irf.com ? 2009 international rectifier 8 lead definitions symbol description v cc low side supply voltage v ss logic ground hin1,2,3 logic inputs for high side gate driver outputs (ho1,2,3), in phase lin1,2,3 logic input for low side gate driver outpu ts (lo1,2,3), in phase fault indicates over-current (itrip) or low-side undervol tage lockout has occurred. negative logic, open-dra in output en logic input to enable i/o functionality. positive l ogic, i.e. i/o logic functions when enable is high. no effect on fault and not latched itrip analog input for overcurrent shutdown. when active, itrip shuts down outputs and activates fault and rcin low. when itrip becomes inactive, fault stays active low for an externally set time t fltclr , then automatically becomes inactive (open-drain high imp edance). rcin external rc network input used to define fault clea r delay, t fltclr, approximately equal to r*c. when rcin > 8 v, the fault pin goes back into open- drain high-impedance com low side gate drivers return v b1,2,3 high side floating supply ho1,2,3 high side gate driver outputs v s1,2,3 high voltage floating supply return lo1,2,3 low side gate driver outputs
ir21364(s&j)pbf www.irf.com ? 2009 international rectifier 9 functional block diagram vcc vbs itrip enab le fault lo1,2,3 ho1,2,3 v itrip 5 v 0 (note 2) 0 0 15 v 15 v 0 v 0 v high imp 0 0 note 1: a shoot-through prevention logic prevents lo1,2,3 and ho1,2,3 for each channel from turning on simult aneously. note 2 : u vcc is not latched, when v cc > u vcc , fault return to high impedance. note 3 : when itrip ir21364(s&j)pbf www.irf.com ? 2009 international rectifier 10 parameter temperature trends figures 7-39 provide information on the experimenta l performance of the ir21364 hvic. the line plotte d in each figure is generated from actual lab data. a small number of individual samples were tested at three temperatures (-40 oc, 25 oc, and 125 oc) in o rder to generate the experimental (exp.) curve. th e line labeled exp. consist of three data points (one data point at each of the tested temperatures) tha t have been connected together to illustrate the understoo d temperature trend. the individual data points on the curve were determined by calculating the averaged e xperimental value of the parameter (for a given temperature). fig. 7. (ton_ls1 ) turn-on propagation delay vs. temperature 0 100 200 300 400 500 600 700 800 -50 -25 0 25 50 75 100 125 temperature ( o c) t on (ns) exp. 0 200 400 600 800 1000 -50 -25 0 25 50 75 100 125 temperature ( o c) t off (ns) exp. fig. 8. (toff_ls1) turn-off propagation delay vs. temperature 0 100 200 300 400 500 600 700 800 -50 -25 0 25 50 75 100 125 temperature ( o c) t on (ns) exp. fig. 9. (ton_hs11) turn-on propagation delay vs. temperature 0 100 200 300 400 500 600 700 800 -50 -25 0 25 50 75 100 125 temperature ( o c) t off (ns) exp. fig. 10. (toff_hs21) turn-off propagation delay vs. temperature
ir21364(s&j)pbf www.irf.com ? 2009 international rectifier 11 0 50 100 150 200 250 -50 -25 0 25 50 75 100 125 temperature ( o c) t r (ns) exp. fig. 11. turn-on rise time vs. temperature 0 20 40 60 80 100 120 -50 -25 0 25 50 75 100 125 temperature ( o c) t f (ns) exp. fig. 12. turn-off fall time vs. temperature 0 200 400 600 800 1000 -50 -25 0 25 50 75 100 125 temperature ( o c) t itrip (ns) exp. fig. 16. itrip to output shutdown propagation delay vs. temperature 0 20 40 60 80 100 -50 -25 0 25 50 75 100 125 temperature ( o c) mt (ns) exp. fig. 13. ton, off matching time vs. temperature 0 20 40 60 80 100 -50 -25 0 25 50 75 100 125 temperature ( o c) mdt (ns) exp. fig. 14. dt matching time vs. temperature 0 20 40 60 80 100 -50 -25 0 25 50 75 100 125 temperature ( o c) pm (ns) exp. fig. 15. pulse width distortion vs. temperature
ir21364(s&j)pbf www.irf.com ? 2009 international rectifier 12 0 200 400 600 800 1000 -50 -25 0 25 50 75 100 125 temperature ( o c) ten (ns) exp. figure 18. en to output shutdown time vs. temperature 0 100 200 300 400 500 600 700 800 900 1000 -50 -25 0 25 50 75 100 125 temperature ( o c) t flt (ns) exp. fig. 19. itrip to fault indication delay vs. temperature 0.0 1.0 2.0 3.0 4.0 5.0 -50 -25 0 25 50 75 100 125 temperature ( o c) tfltclr (ms) exp. fig. 20. fault clear time vs. temperature 0 200 400 600 800 1000 1200 -50 -25 0 25 50 75 100 125 temperature ( o c) dlton1 (ns) exp. fig. 17. dead time vs. temperature 0.0 1.5 3.0 4.5 6.0 -50 -25 0 25 50 75 100 125 temperature ( o c) lin1_vth+ (v) exp. fig. 21. input positive going threshold vs. temperature 0.0 0.5 1.0 1.5 2.0 2.5 -50 -25 0 25 50 75 100 125 temperature ( o c) lin1_vth- (v) exp. fig. 22. input negative going threshold vs. temperature
ir21364(s&j)pbf www.irf.com ? 2009 international rectifier 13 0 100 200 300 400 500 600 700 800 -50 -25 0 25 50 75 100 125 temperature ( o c) v it,th+ (mv) exp. p. fig. 23. itrip input positive going threshold vs. temperature 0 100 200 300 400 500 600 700 800 -50 -25 0 25 50 75 100 125 temperature ( o c) v it,th- (mv) exp. fig. 24. itrip input negative going threshold vs. temperature 0 100 200 300 400 500 600 -50 -25 0 25 50 75 100 125 temperature ( o c) vol_lo1 (mv) exp. 0 400 800 1200 1600 -50 -25 0 25 50 75 100 125 temperature ( o c) voh_lo1 (mv) exp. 0.0 0.5 1.0 1.5 2.0 2.5 -50 -25 0 25 50 75 100 125 temperature ( o c) ileak1 (a) exp. fig. 28. offset supply leakage current vs. temperature 0 20 40 60 80 100 120 -50 -25 0 25 50 75 100 125 temperature ( o c) r on,flt (  ) exp. fig. 27. fault low on-resistance vs. temperature fig. 25. low level output voltage vs. temperature fig. 26. high level output voltage vs. temperature
ir21364(s&j)pbf www.irf.com ? 2009 international rectifier 14 0.0 0.5 1.0 1.5 2.0 -50 -25 0 25 50 75 100 125 temperature ( o c) i qcc1 (ma) exp. fig. 29. quiescent v cc supply current vs. temperature 0.0 0.5 1.0 1.5 2.0 -50 -25 0 25 50 75 100 125 temperature ( o c) i qcc0 (ma) exp. fig. 30. quiescent v cc supply current vs. temperature 0 10 20 30 40 50 60 70 80 -50 -25 0 25 50 75 100 125 temperature ( o c) i qbs10 ( a) exp. fig. 31. quiescent v bs supply current vs. temperature 0 20 40 60 80 100 120 140 -50 -25 0 25 50 75 100 125 temperature ( o c) i qbs11 ( a) exp. fig. 32. quiescent v bs supply current vs. temperature 0.0 3.0 6.0 9.0 12.0 15.0 -50 -25 0 25 50 75 100 125 temperature ( o c) v ccuv- (v) exp. fig. 33. v cc supply undervoltage negative going threshold vs. temperature 0.0 3.0 6.0 9.0 12.0 15.0 18.0 -50 -25 0 25 50 75 100 125 temperature ( o c) v ccuv+ (v) exp. fig. 34. v cc supply undervoltage positive going threshold vs. temperature
ir21364(s&j)pbf www.irf.com ? 2009 international rectifier 15 0.0 3.0 6.0 9.0 12.0 15.0 -50 -25 0 25 50 75 100 125 temperature ( o c) v bsuv- (v) exp. fig. 35. v bs supply undervoltage negative going threshold vs. temperature 0.0 3.0 6.0 9.0 12.0 15.0 -50 -25 0 25 50 75 100 125 temperature ( o c) v bsuv+ (v) exp. fig. 36. v bs supply undervoltage positive going threshold vs. temperature -0.5 -0.4 -0.3 -0.2 -0.1 0.0 -50 -25 0 25 50 75 100 125 temperature ( o c) i o+ (ma) exp. p. fig. 37. output high short circuit pulsed current vs. temperature 0.0 0.1 0.2 0.3 0.4 0.5 -50 -25 0 25 50 75 100 125 temperature ( o c) i o- (ma) exp. fig. 38. output low short circuit pulsed current vs. temperature -14 -12 -10 -8 -6 -4 -2 0 -50 -25 0 25 50 75 100 125 temperature ( o c) vs1_rst_domin (v) exp. fig. 39. max -vs vs. temperature
ir21364(s&j)pbf www.irf.com ? 2009 international rectifier 16 case outlines
ir21364(s&j)pbf www.irf.com ? 2009 international rectifier 17
ir21364(s&j)pbf www.irf.com ? 2009 international rectifier 18 carrier tape dimension for 28soicw code min max min max a 11.90 12.10 0.468 0.476 b 3.90 4.10 0.153 0.161 c 23.70 24.30 0.933 0.956 d 11.40 11.60 0.448 0.456 e 10.80 11.00 0.425 0.433 f 18.20 18.40 0.716 0.724 g 1.50 n/a 0.059 n/a h 1.50 1.60 0.059 0.062 metric imperial reel dimensions for 28soicw code min max min max a 329.60 330.25 12.976 13.001 b 20.95 21.45 0.824 0.844 c 12.80 13.20 0.503 0.519 d 1.95 2.45 0.767 0.096 e 98.00 102.00 3.858 4.015 f n/a 30.40 n/a 1.196 g 26.50 29.10 1.04 1.145 h 24.40 26.40 0.96 1.039 metric imperial e f a c d g a b h note : controlling dim ension in m m loaded tape feed direction a h f e g d b c
ir21364(s&j)pbf www.irf.com ? 2009 international rectifier 19 carrier tape dimension for 44plcc code min max min max a 23.90 24.10 0.94 0.948 b 3.90 4.10 0.153 0.161 c 31.70 32.30 1.248 1.271 d 14.10 14.30 0.555 0.562 e 17.90 18.10 0.704 0.712 f 17.90 18.10 0.704 0.712 g 2.00 n/a 0.078 n/a h 1.50 1.60 0.059 0.062 metric imperial reel dimensions for 44plcc code min max min max a 329.60 330.25 12.976 13.001 b 20.95 21.45 0.824 0.844 c 12.80 13.20 0.503 0.519 d 1.95 2.45 0.767 0.096 e 98.00 102.00 3.858 4.015 f n/a 38.4 n/a 1.511 g 34.7 35.8 1.366 1.409 h 32.6 33.1 1.283 1.303 metric imperial e f a c d g a b h note : controlling dim ension in m m loaded tape feed direction a h f e g d b c
ir21364(s&j)pbf www.irf.com ? 2009 international rectifier 20 the information provided in this document is believ ed to be accurate and reliable. however, internatio nal rectifier assumes no responsibility for the consequences of the use of this information . international rectifier assumes no responsibilit y for any infringement of patents or of other rights of third parties which may result from the u se of this information. no license is granted by i mplication or otherwise under any patent or patent rights of international rectifier. the spec ifications mentioned in this document are subject t o change without notice. this document supersedes and replaces all information previously supplied. for technical support, please contact ir?s technica l assistance center http://www.irf.com/technical-info/ world headquarters: 233 kansas st., el segundo, california 90245 tel: (310) 252-7105 order information 28-lead soic ir21364spbf 44-lead plcc IR21364JPBF 28-lead soic tape & reel ir21364strpbf 44-lead plcc tape & reel ir21364jtrpbf


▲Up To Search▲   

 
Price & Availability of IR21364JPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X